

Certificate of Compliance

Certificate No. : OXI210422191721EC

FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD. Applicant

Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, Qingliu,

Sanming, Fujian

FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD. Manufacturer

Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, Qingliu,

Sanming, Fujian

Product Name : BICYCLE TAILLIGHTS

Trade Name NQY

Main Test Model

0118A9 AQY0117, AQY0117-1, AQY0116, AQY0115, AQY0113, AQY0113-1, Additional Model

AQY0113-2

Test Standard EN IEC 55015:2019+A11:2020.

EN 61547:2009 As shown in the : OXI210422191721ER Test Report No.

The tests that base on the above designated product Complies with the essential requirements of Directive 2014/30/EU relating to Electrical Equipment designed for use within Electromagnetic Compatibility.

The test results apply only to the particular sample tested and to the specific tests carried out. Specifically to the sample investigated in our test reference number only. The CE markings as shown below can be affixed on the product after preparation of necessary technical documentation.

Other relevant Directives have to be observed.

Ningbo OXI Technology Co., Ltd.

EMC TEST REPORT

Test report

On Behalf of

FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.

For

BICYCLE TAILLIGHTS

Model No.: 0118A9

Serial Model: AQY0117, AQY0117-1, AQY0116, AQY0115,

AQY0113, AQY0113-1, AQY0113-2

Prepared for

FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.

Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, Qingliu, Sanming, Fujian

Prepared by

Ningbo OXI Technology Co.,Ltd.

Building No.1377, Jianlan Road, Gaoxin District, Ningbo, Zhejiang, China

TEST RESULT CERTIFICATION

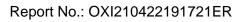
Applicant's name	FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.
Address	Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, Qingliu, Sanming, Fujian
Manufacture's Name	FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.
Address	Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, 'Qingliu, Sanming, Fujian
Product description	
Product name	BICYCLE TAILLIGHTS
Trade Mark	.NQY
Model and/or type reference	.0118A9, AQY0117, AQY0117-1, AQY0116, AQY0115, AQY0113, AQY0113-1, AQY0113-2
Standards	.EN IEC 55015:2019+A11:2020 EN 61547:2009

This device described above has been tested by Ningbo OXI Technology Co.,Ltd., and the test results show that the equipment under test (EUT) is compliancewith the 2014/30/EU directive and its amendment requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of OXI, this document may be altered or revised by Ningbo OXI Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

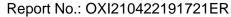
Date of Issue	Apr. 08, 2	021	
Test Result	Pass		
Producer	: AmyYang	,	Date : Apr. 08, 2021
	Amy Yang/ Engineer		
Signatory	ARBROVERAS		Date : Apr. 08, 2021

Date (s) of performance of tests...... Apr.01, 2021 ~ Apr.08, 2021


Sherwin Qian/Director

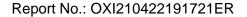
Date of Test.....

TABLE OF CONTENTS


1.	DESCRIPTION OF VERSION	4
2.	SUMMARY OF STANDARDS AND RESULTS	5
3.	GENERAL INFORMATION	6
4.	TEST EQUIPMENT USED	8
5.	DISTURBANCE VOLTAGE	10
6.	RADIATED ELECTROMAGNETIC DISTURBANCES (9KHZ TO 30MHZ)	11
7.	RADIATED ELECTROMAGNETIC DISTURBANCES (30MHZ TO 300MHZ)	12
8.	ELECTROSTATIC DISCHARGE	15
9.	RADIO-FREQUENCY ELECTROMAGNETIC FIELDS	18
10.	PHOTOGRAPHS OF EUT	20

1. DESCRIPTION OF VERSION

Edition No.	Date of Revision	Revision Summary	Report Number
0	Apr. 08, 2021	Original Report	OXI210422191721ER


2. SUMMARY OF STANDARDS AND RESULTS

	EN IEC 55015	
Clause	Requirement – Test case	Results
4.2	Insertion loss	N/A
4.3.1	Disturbance voltage at mains terminals "*"	N/A
4.3.2	Disturbance voltage at load terminals	N/A
4.3.3	Disturbance voltage at control terminals	N/A
4.4.1	Radiated electromagnetic disturbances (9 kHz to 30 MHz) "*"	Р
4.4.2	Radiated electromagnetic disturbances (30 MHz to 300 MHz) "*"	Р
Annex B	Independent method of measurement of radiated emission (CDNE)	N/A
	EN IEC 61000-3-2	
Clause	Requirement – Test case	Results
6.1	Control principle shall be allowed for the application according to the clause 6.1	N/A
6.2	Harmonic current emissions "*"	N/A
	EN 61000-3-3	
Clause	Requirement – Test case	Results
4	Voltage changes, voltage fluctuations and flicker "*"	N/A
	EN 61547	
Clause	Requirement – Test case	Results
5.2	Electrostatic discharge	Р
5.3	Radio-frequency electromagnetic fields	Р
5.4	Power frequency magnetic fields	N/A
5.5	Fast transients	N/A
5.6	Injected currents (radio-frequency common mode)	N/A
5.7	Surges	N/A
5.8	Voltage dips and short interruptions	N/A
Suppleme	entary information:	

Possible test case verdicts:

- test case does not apply to the test object: N/A
- test object does meet the requirement: P(Pass)
- test object does not meet the requirement: F(Fail)

Remark: "*" The test was carried out in all the test modes, only the worst data are list in report.

3. GENERAL INFORMATION

3.1. Description of EUT

Equipment	BICYCLE TAILLIGHTS
Trade Mark	NQY
Model Name	0118A9, AQY0117, AQY0117-1, AQY0116, AQY0115, AQY0113, AQY0113-1, AQY0113-2
Serial No.	Not labeled
Model Difference	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: 0118A9.
Lamp technology used	☐ Fluorescent lamp ☐ High pressure discharge lamp (HID) ☐ Light emitting diode (LED/OLED) ☐ Tungsten halogen lamp ☐ Incandescent lamp ☐ Others:

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2. Block diagram of EUT configuration

EUT

3.3. Operating condition of EUT

Test mode	Description
1	ON

3.4. Test conditions

Temperature: 15-25°C

Relative Humidity: 30-60 %

Atmospheric pressure: 800hPa-1060hPa

3.5. Performance criterion

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

3.6. Measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})	
Conducted	Level Accuracy:			
Emission	9kHz~150kHz	±3.42 dB	±4.0 dB	
EIIIISSIOII	150kHz to 30MHz	±3.42 dB	±3.6 dB	
Radiated Emission	Level Accuracy:	±4.60 dB	N/A	
	9kHz to 30 MHz	±4.00 UD		
Radiated Emission	Level Accuracy:	±4.40 dB	±5.2 dB	
	30MHz to 1000 MHz	±4.40 UD	±3.2 UB	
Radiated Emission	Level Accuracy:	±4.20 dB	N/A	
. 133.3152 2111001011	Above 1000MHz	±4.20 UD	IN/A	

4. Test equipment used

4.1. Conducted Emission Measurement

(Test software: EZ-EMC Ver. EMC-con3A1.1)

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	2020.10.30
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	2020.10.30
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCS30	834115/006	2020.11.01
4	Coaxial cable	ZDECL	Z302S	18091904	2020.10.30
5	AAN	TESEQ	T8-Cat6	38888	2020.10.30

4.2. Radiated Emission Measurement

(Test software: EZ-EMC Ver. FA-03A2 RE)

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	TRILOG Broadband	Schwarzbeck	VULB 9168	869	2020.11.02
ı	Antenna	Scriwarzbeck	VOLD 9100		2020.11.02
2	Amplifier	HP	8447E	2945A02747	2020.11.01
3	2m Triple-Loop Antenna	Daze	ZN30401	17014	2020.10.30
4	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI7	100362	2020.11.01
5	Coaxial cable	ZDECL	ZT26	18091906	2020.11.01
6	Coaxial cable	ZDECL	ZT26	18097604	2020.11.01
7	Coaxial cable	ZDECL	ZT26	18091908	2020.11.01
8	Coaxial cable	ZDECL	ZT26	18091907	2020.11.01

4.3. Harmonics and flicker

(Test software: TTI HA1600 Ver.3.01)


Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Analyzer	Laplace instruments	AC2000A	311363	2020.11.02
2	Power Source	HTEC Instruments	HPF5010	633088	2020.11.02

4.4. Electrostatic Discharge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	ESD Simulator	TESTQ	NSG437	329	2020.11.05

4.5. RF electromagnetic field Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Signal Generator	R&S SMT 06		832080/007	2020.10.30
2	Log-Bicon Antenna	Schwarzbeck	VULB9161	4022	2020.10.30
3	Power Amplifier	AR	150W1000M1	320946	2020.10.30
4	Microwave Horn Antenna	AR	AT4002A	321467	2020.10.30
5	Power Amplifier	AR	25S1G4A	308598	2020.10.30

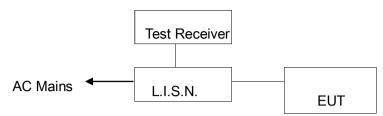
4.6. Surge& Electrical Fast Transient/Burst Immunity Test


Iter	n Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Surge& Burst Generator	Lioncel	LSG-545CB	180602	2020.10.30
2	Capacitive coupling clamp	Lioncel	EFTC	18071801	2020.10.30

4.7. Power-frequency magnetic fields Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Magnetic field generator	Lioncel	PMF-801C-C	180701	2020.10.30

4.8. Voltage dips and interruptions Test


Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Voltage dip simulator	Lioncel	VDS-1102	180902	2020.10.30

5. Disturbance voltage

5.1. Block diagram of test setup

5.2. Limit of mains terminal disturbance voltage

_	Limits (dBμV)					
Frequency range	Quasi-peak Level	Average Level				
9KHz ~ 50KHz	110					
50KHz ~ 150KHz	90 ~ 80*					
150KHz ~ 0.5MHz	66 ~ 56*	56 ~ 46*				
0.5MHz ~ 5MHz	56	46				
5.0MHz ~ 30MHz	60	50				

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The lower limit shall apply at the transition frequencies.
- 3. For electrodeless lamps and luminaires, the limit in the frequency range of 2,51 MHz to 3,0 MHz is 73 dB(μ V) quasi-peak and 63 dB(μ V) average.

5.3. EUT configuration on test

The following equipments are installed on conducted emission test to meet EN IEC 55015 requirement and operating in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating condition of EUT

- 5.5.1. Setup the EUT and simulators as shown in Section 5.1.1.
- 5.5.2. Turn on the power of all equipments.
- 5.5.3. Let the EUT work in test modes and test it.

5.5. Test procedure

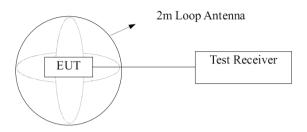
The EUT is put on the table which is 40 cm distance to vertical ground plane, 80 cm to ground plane and connected to the AC mains through a Line Impedance Stabilization Network (L.I.S.N.). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission according to the EN IEC 55015 regulations during conducted emission test. Andthe voltage probe had been used for the load terminals test according to the EN IEC 55015 standard.


The bandwidth of the test receiver (R&S ESCS30) is set at 10KHz in 150KHz~30MHz and 200Hz bandwidth in 9KHz~150KHz.

The frequency range from 9KHz to 30MHz is checked.

All the Test results are listed in Section 5.6.

5.6. Test results


N/A

6. Radiated electromagnetic disturbances (9KHz to 30MHz)

6.1. Block diagram of test setup

6.2. Limit of Radiated electromagnetic disturbances (9KHz to 30MHz)

		_	Limits for loop diameter (dBμA)
		F	2m
9KHz	~	70KHz	88
70KHz	~	150KHz	88 ~ 58*
150KHz	~	3.0MHz	58 ~ 22*
3.0MHz	~	30MHz	22

Notes:

- 1. At the transition frequency, the lower limit applies.
- 2. * decreasing linearly with logarithm of the frequency.
- 3. For electrodeless lamps and luminaires, the limit in the frequency range of 2.2MHz to 3.0MHz is 58 dB μ A.

6.3. EUT configuration on test

The configuration of the EUT is same as Section 3.4.

6.4. Operating condition of EUT

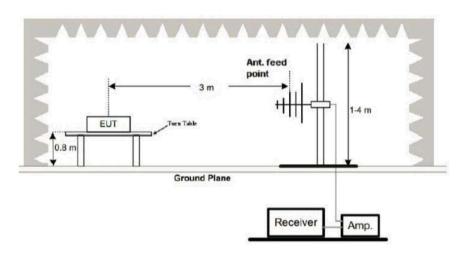
- 6.4.1. Setup the EUT as shown in Section 6.1.
- 6.4.2. Turn on the power of all equipments.
- 6.4.3. Let the EUT work in test mode (ON) and test it.

6.5. Test procedure

The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three axes of X Y Z are tested by coaxial switch..

The frequency range from 9KHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9KHz to 150KHz, the bandwidth of the field strength meter (R&S test receiver ESCS30) is set at 200Hz. For frequency band 150KHz to 30MHz, the bandwidth is set at 10KHz.

The peak value is too low against the limit, so the Test data is not record.


6.6. Test results

PASS

7. Radiated electromagnetic disturbances (30MHz to 300MHz)

7.1. Block diagram of test setup (in semi-Anechoic Chamber)

7.2. Limit of Radiated electromagnetic disturbances (30MHz to 300MHz)

All emanations from a devices or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Frequency	Distance	Field Strengths Limits
(MHz)	(Meters)	(dBμV/m)
30 ~ 230	3	40
230 ~ 300	3	47

Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) Distance refers to the distance in meters between the measuring instruments antenna and

7.3. EUT configuration on test

The EN 55015 regulations test method must be used to find the maximum emission during radiated emission test.

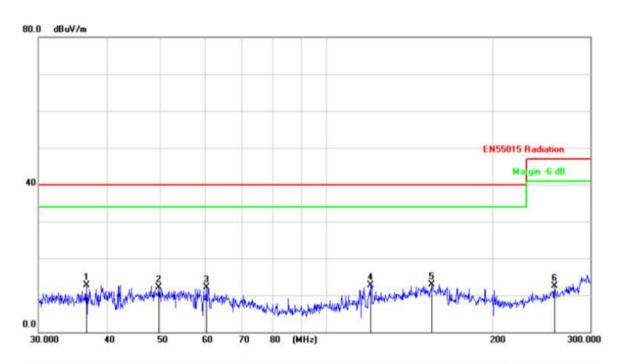
7.4. Operating condition of EUT

- 7.4.1. Setup the EUT as shown on Section 7.1.
- 7.4.2. Turn on the power of all equipments.
- 7.4.3. Let the EUT work in test mode and measure it.

7.5. Test procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum

emission level. Broadband antennas (calibrated by dipole antenna) are used as a receiving antenna. Both horizontal and vertical polarizations of the antenna are set on test.

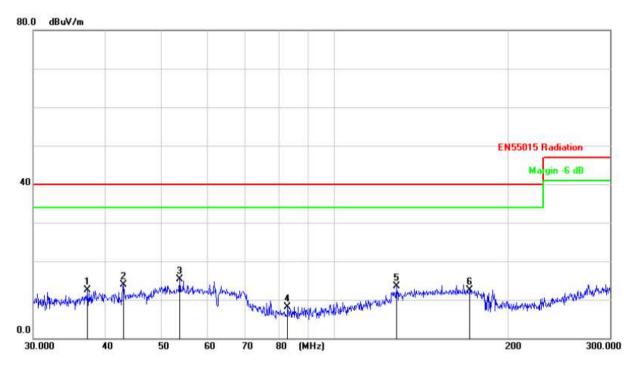

The bandwidth setting on the test receiver (R&S ESPI) is 120KHz.

The EUT was tested in Semi-Anechoic Chamber.

7.6. Test results

PASS.

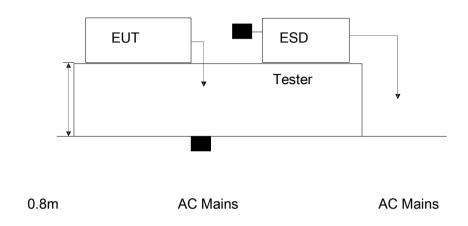
Polarization: H



No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		36.6540	25.78	-12.99	12.79	40.00	-27.21	peak			
2		49.5589	24.67	-12.56	12.11	40.00	-27.89	peak			
3		60.4117	25.23	-13.20	12.03	40.00	-27.97	peak			
4		119.9834	26.95	-14.15	12.80	40.00	-27.20	peak			
5	*	154.9249	24.96	-12.06	12.90	40.00	-27.10	peak			
6		258.2979	25.76	-13.23	12.53	47.00	-34.47	peak			

Note: Result=Reading +Factor Over Limit=Result-Limit

Polarization: V


No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		37.2496	25.42	-12.89	12.53	40.00	-27.47	peak			
2		42.9656	26.50	-12.62	13.88	40.00	-26.12	peak			
3	*	53.8419	28.25	-12.85	15.40	40.00	-24.60	peak			
4		82.8173	25.08	-16.92	8.16	40.00	-31.84	peak			
5		127.9739	27.20	-13.61	13.59	40.00	-26.41	peak			
6		171.4436	25.02	-12.50	12.52	40.00	-27.48	peak			

Note: Result=Reading +Factor Over Limit=Result-Limit

8. Electrostatic discharge

8.1. Block diagram of ESD test setup

Remark: is Discharge Electrode

8.2. Severity levels and performance criterion

8.2.1. Severity level

Characteristics	Test levels				
Air discharge	±8 kV				
Contact discharge	±4 kV				

8.2.2. Performance criterion: B

8.3. EUT configuration on test

The configuration of EUT are listed in Section 3.4.

8.4. Operating condition of EUT

- 8.4.1. Setup the EUT as shown in Section 8.1.
- 8.4.2. Turn on the power of all equipments.
- 8.4.3. Let the EUT work in test mode (full load) and test it.

8.5. Test procedure

8.5.1. Air discharge:

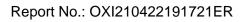
This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

8.5.2. Contact discharge:

All the procedure shall be same as Section 9.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

8.5.3. Indirect discharge for horizontal coupling plane

At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.


8.5.4. Indirect discharge for vertical coupling plane

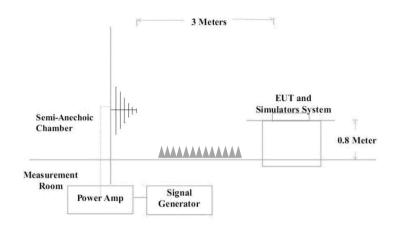
At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.6. Test results

PASS.


Please refer to the following page.

Test results for electrostatic discharge


Tested by		Jerry	Jerry Wang							
Test date			2021.04.07							
Amb	ient Temperature (°C):24	Relat	tive Hu	midity (%):55	5 A	tmos	pheric Pres	ssure (hPa):1003		
Test	set-up:	\boxtimes	Table	top equipme	nt					
			Floor	standing equ	ipment					
			Wall c	or ceiling mou	ınted eq	uipm	ent (Treate	d as table top)		
Оре	rating mode:	ON	•							
	ber of discharges for each test	10								
Discharge interval:			1S							
Performance criterion		В	В							
No.	Location of discharge	Pola	arity	Discharge	Numbe dischar	_	Test level [kV]	Observations		
1	HCP top side	P8	ξN	С	10		4	PASS		
3	HCP bottom side	P8	ξN	С	10		4	PASS		
5	VCP right side	P8	ξN	С	10		4	PASS		
7	VCP left side	P8	ξN	С	10		4	PASS		
9	Points on conductive surface	P&N		С	10		4	PASS		
11	Points on non-conductive surface	P&N		А	10		8	PASS		
HCF	P = Horizontal coupling plate	N = N	N = Negative			A = Air discharge				
VCP = Vertical coupling plate F		P = Positive			C =	C = Contact discharge				

9. Radio-frequency electromagnetic fields

9.1. R/S test setup

9.2. Severity levels and performance criterion

9.2.1. Severity level

Characteristics	Test levels					
Frequency range	80 MHz to 1 000 MHz					
Test level	3 V/m (unmodulated)					
Modulation	1 kHz, 80 % AM, sine wave					

9.2.2. Performance criterion: A

9.3. EUT configuration on test

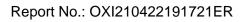
The configuration of EUT are listed in Section 3.4.

9.4. Operating condition of EUT

Setup the EUT as shown in Section 9.1. The operating conditions of EUT are listed in section 3.3.

9.5. Test procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above the ground. The EUT is set 3 meters away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarizations of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

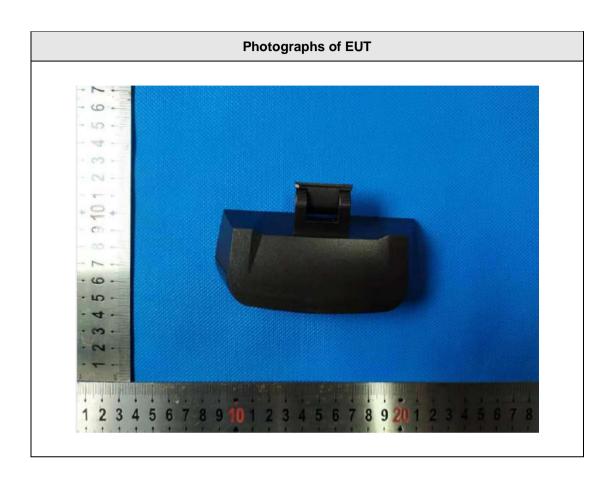

In order to determine the performance of EUT, a CCD camera is used to monitor the FUT

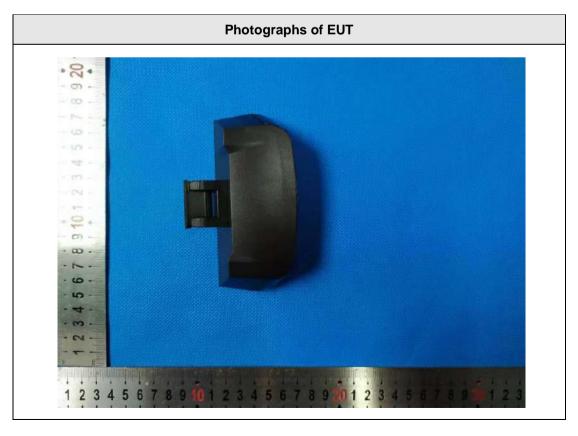
For testing of equipment, this carrier signal is 80 % amplitude modulated with a 1 kHz sine wave to simulate actual threats.

9.6. Test results

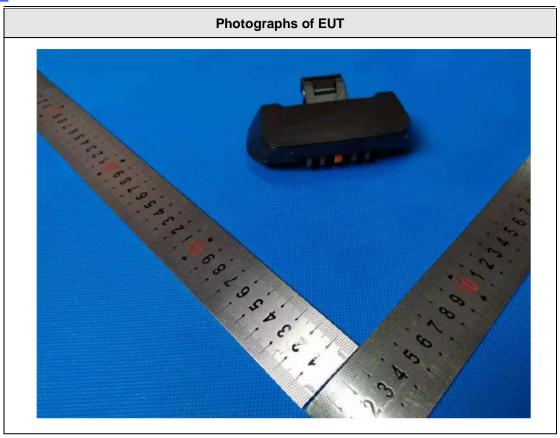
PASS.

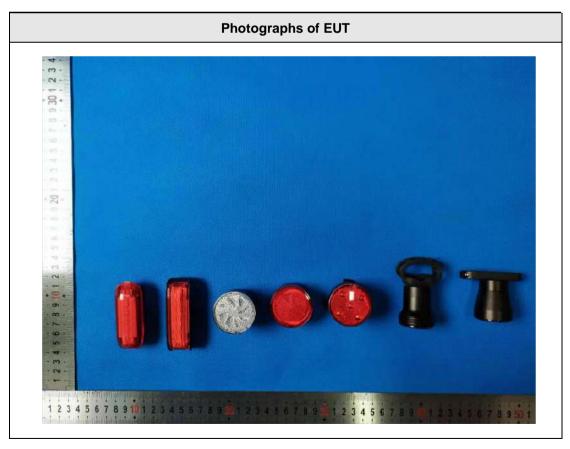
Please refer to the following page.




Test results for radiated electromagnetic field

Tested by:	Jerry Wang			
Test date:	2021.04.07			
Ambient Temperature (°C):24	Relative Humidity (%):55 Atmospheric Pressure (hPa):1003			
Operating mode:	ON			
Test set-up:	Equipment on the table (0,8 m height)			
	☐ Equipment standing on floor (0,05 − 0,15 m height)			
Field Strength:	3V/m			
Frequency Range:	80MHz to 1000MHz			
Modulation:	⊠ 80 % AM with 1 kHz sine wave □ Pulse □ None			
Step size [%]:	1%			
Dwell time:	1Sec			
Performance criterion:	A			
Position	Horizontal	Vertical		
Front	PASS PASS			
Right Side	PASS PASS			
Left Side	PASS PASS			
Rear	PASS PASS			




10. Photographs of EUT

End of report

Certificate of Compliance

Certificate No.

: OXI210422191721RC

Applicant

FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD. Xiaowei Shuangchuang Base, Chengnan Industrial

Park, Longjin, Qingliu, Sanming, Fujian

Manufacturer

: FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.

Xiaowei Shuangchuang Base, Chengnan Industrial

Park, Longjin, Qingliu, Sanming, Fujian

Product Name

: BICYCLE TAILLIGHTS

Trade Name

: NQY

Main Test Model

: 0118A9

Additional Model

: AQY0117, AQY0117-1, AQY0116, AQY0115, AQY0113, AQY0113-1,

AQY0113-2

Test Standard

: IEC 62321-4:2013+AMD1:2017, IEC 62321-5:2013,

IEC 62321-6:2015, IEC 62321-7-1:2015, IEC 62321-7-2:2017, IEC 62321-8:2017

As shown in the

Test Report No.

: OXI210422191721RR

The EUT described above has been tested by us and found in compliance with the council RoHS 2 Directive 2011/65/EU Annex II (EU) 2015/863 as last amended by Directive (EU) 2017/2102. This certificate is only valid in conjunction with the test report.

RoHS

Andy Zheng Approved Signatory Apr. 08, 2021

Ningbo OXI Technology Co.,Ltd.

Report No: OXI210422191721RR Date: Apr. 08, 2021 Page 1 of 8

Applicant: FUJIAN ANQIYOU ELECTRONIC TECHNOLOGY CO.,LTD.

Address : Xiaowei Shuangchuang Base, Chengnan Industrial Park, Longjin, Qingliu, Sanming, Fujian

The following sample(s) was /were submitted and identified on behalf of the clients as:

Sample Name : BICYCLE TAILLIGHTS

Trade Name : NQY

Sample Model : 0118A9, AQY0117, AQY0117-1, AQY0116, AQY0115, AQY0113,

AQY0113-1, AQY0113-2

Sample Received Date : Apr.01, 2021

Testing Period : Apr.01, 2021 To Apr.08, 2021

Test Requested : Selected test (s) in the selected parts as requested by client with the

RoHS 2 Directive 2011/65/EU Annex II (EÛ) 2015/863 as last amended

by Directive (EU) 2017/2102.

Test Method : Please refer to next page(s).

Test Result : Please refer to next page(s).

Signed for and on behalf of

Andy Zheng/ Approved Signatory

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

Add: Building No.1377, Jianlan Road, Gaoxin District, Ningbo, Zhejiang, China Tel: +86-574-27872479,

Certificate Search: http://www.oxi-lab.com, E-mail: jack@oxi-lab.cn

ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 2 of 8

Test Content:

Test Item(s)	Test Method	Reference	Unit	Limit	MDL
Cadmium(Cd)	IEC 62321-5:2013	ICP-OES	mg/kg	100	2
Lead(Pb)	IEC 62321-5:2013	ICP-OES	mg/kg	1000	2
Mercury(Hg)	IEC 62321-4:2013+AMD1:2017	ICP-OES	mg/kg	1000	2
Hexavalent Chromium(CrVI) (Metal)	IEC 62321-7-1:2015	UV-Vis	μg/cm²	0.13	0.1
Hexavalent Chromium(CrVI) (Nonmetal)	IEC 62321-7-2:2017	UV-Vis	mg/kg	1000	8
PBBs (Next form)	IEC 62321-6:2015	GC-MS	mg/kg	1000	5
PBDEs (Next form)	IEC 62321-6:2015	GC-MS	mg/kg	1000	5
Dibutyl Phthalate(DBP)	IEC 62321-8:2017	GC-MS	mg/kg	1000	30
Butyl benzyl phthalate (BBP)	IEC 62321-8:2017	GC-MS	mg/kg	1000	30
Di-(2-ethylhexyl) Phthalate(DEHP)	IEC 62321-8:2017	GC-MS	mg/kg	1000	30
Diisobutyl phthalate (DIBP)	IEC 62321-8:2017	GC-MS	mg/kg	1000	30

PBBs		PBDEs		
Monobromobiphenyl	Hexabromobiphenyl	Monobromodiphenyl ether	Hexabromodiphenyl ether	
Dibromobiphenyl	Heptabromobiphenyl	Dibromodiphenyl ether	Heptabromodiphenyl ether	
Tribromobiphenyl	Octabromobiphenyl	Tribromodiphenyl ether	Octabromodiphenyl ether	
Tetrabromobiphenyl	Nonabromobiphenyl	Tetrabromodiphenyl ether	Nonabromodiphenyl ether	
Pentabromobiphenyl	Decabromobiphenyl	Pentabromodiphenyl ether	Decabromodiphenyl ether	

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

Add: Building No.1377, Jianlan Road, Gaoxin District, Ningbo, Zhejiang, China Tel: +86-574-27872479,

ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 3 of 8

Sample Description:

No.	Description	Name	
1	Plastic	Black Plastic	
2	Plastic	Clear Plastic	
3	Metal	Silver Screw	
4	Plastic	Silver Plastic	
5	Plastic	Black Electronic Component	
6	Metal	Wire Core	
7	PCB	PCB	
8	LED	LED	
9	Battery	Battery	
10	Plastic	Black Line Skin	
11	Plastic	Red Line Skin	

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 4 of 8

Test Results:

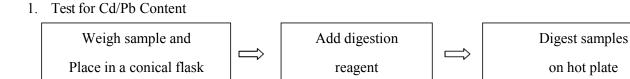
Test Item(s)	No.1	No.2	No.3	No.4	No.5
Cadmium (Cd)	N.D.	N.D.	N.D.	N.D.	N.D.
Lead (Pb)	N.D.	N.D.	N.D.	N.D.	N.D.
Mercury (Hg)	N.D.	N.D.	N.D.	N.D.	N.D.
Hexavalent Chrormium (CrVI)	N.D.	N.D.	N.D.	N.D.	N.D.
PBBs	N.D.	N.D.		N.D.	N.D.
PBDEs	N.D.	N.D.		N.D.	N.D.
Dibutyl Phthalate (DBP)	N.D.	N.D.		N.D.	N.D.
Butyl benzyl phthalate (BBP)	N.D.	N.D.		N.D.	N.D.
Di-(2-ethylhexyl) Phthalate(DEHP)	N.D.	N.D.		N.D.	N.D.
Diisobutyl phthalate (DIBP)	N.D.	N.D.		N.D.	N.D.
Test Item(s)	No.6	No.7	No.8	No.9	No.10
Cadmium (Cd)	N.D.	N.D.	N.D.	N.D.	N.D.
Lead (Pb)	N.D.	N.D.	N.D.	N.D.	N.D.
Mercury (Hg)	N.D.	N.D.	N.D.	N.D.	N.D.
Hexavalent Chrormium (CrVI)	N.D.	N.D.	N.D.	N.D.	N.D.
PBBs		N.D.	N.D.		N.D.
PBDEs		N.D.	N.D.		N.D.
Dibutyl Phthalate (DBP)		N.D.	N.D.		N.D.
Butyl benzyl phthalate (BBP)		N.D.	N.D.		N.D.
Di-(2-ethylhexyl) Phthalate(DEHP)		N.D.	N.D.		N.D.
Diisobutyl phthalate (DIBP)		N.D.	N.D.		N.D.

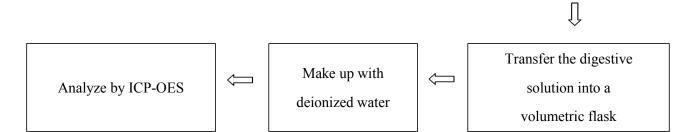
This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

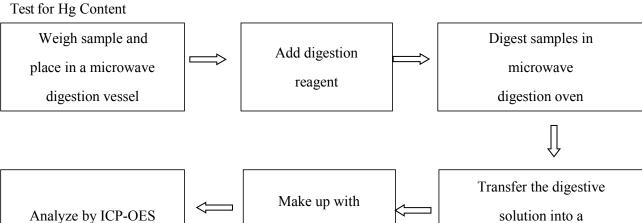
ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 5 of 8

Test Item(s)	No.11
Cadmium (Cd)	N.D.
Lead (Pb)	N.D.
Mercury (Hg)	N.D.
Hexavalent Chrormium (CrVI)	N.D.
PBBs	N.D.
PBDEs	N.D.
Dibutyl Phthalate (DBP)	N.D.
Butyl benzyl phthalate (BBP)	N.D.
Di-(2-ethylhexyl) Phthalate(DEHP)	N.D.
Diisobutyl phthalate (DIBP)	N.D.

Note:


- 1. mg/kg= ppm
- 2. N.D.= Not Detected(<MDL)
- 3. MDL = Method Detection Limit
- 4. -= No Testing
- 5. when Cr(VI) in a sample is detected below the $0.10~\mu g/cm^2~LOQ$ (limit of quantification), the sample is considered to be negative for Cr(VI). Since Cr(VI) may not be uniformly distributed in the coating even within the same sample batch, a "grey zone" between $0.10~\mu g/cm^2$ and $0.13~\mu g/cm^2$ has been established as "inconclusive" to reduce inconsistent results due to unavoidable coating variations. In this case, additional testing may be necessary to confirm the presence of Cr(VI). When Cr(VI) is detected above $0.13~\mu g/cm^2$, the sample is considered to be positive for the presence of Cr(VI) in the coating layer. unavoidable coating variations may influence the determination Information on storage conditions and production date of the tested sample is unavailable and thus Cr(VI) results represent status of the sample at the time of testing.


This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.



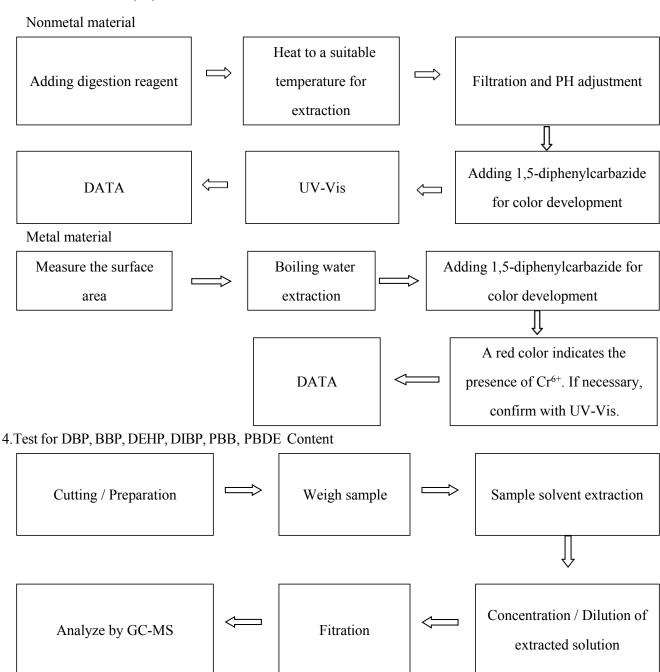
ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 6 of 8

Test Process:

deionized water

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

Add: Building No.1377, Jianlan Road, Gaoxin District, Ningbo, Zhejiang, China Tel: +86-574-27872479, Certificate Search: http://www.oxi-lab.com, E-mail: jack@oxi-lab.cn


solution into a

volumetric flask

ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 7 of 8

3. Test for Chromium (VI) Content

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.

ReportNo: OXI210422191721RR Date: Apr. 08, 2021 Page 8 of 8

Sample Photo:

*** End of Report ***

This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of OXI, this test report shall not be copied except in full and published as advertisement. OXI Physical & Chemical Lab.